Analisis Kekasaran Permukaan Besi ASTM36 dengan menggunakan Surftest dan Image –J
Abstract
Kekasaran permukaan logam merupakan salah satu parameter yang dapat dijadikan acuan dalam penilaian mutu suatu logam. Nilai kekasaran permukaan suatu bahan logam dapat dilakukan dengan pendekatan matematik dan pengukuran. Pada penelitian ini, kajian mengenai kekasaran permukaan suatu logam dilakukan dengan menggunakan pengukuran langsung dan menggunakan analisis citra gambar. Adapun teknik pengukuran langsung dilakukan dengan menggunakan Surftest pada 20 titik (5 titik dari diagonal sisi kanan, 5 titik diagonal sisi kiri, 5 titik vertikal dan 5 titik horizontal) sedangkan analisis citra gambar dilakukan dengan menggunakan Image-J pada foto gambar permukaan besi. Berdasarkan metode penelitian yang telah dilakukan diperoleh kesimpulan yaitu semakin besar nilai grit abrasive paper yang digunakan pada permukaan besi, maka nilai kekasaran permukaan besi semakin kecil/semakin halus (nilai kekasaran permukaan cenderung menurun). Sedangkan hasil pengolahan citra gambar yang dilakukan dengan Image-J telah berhasil menunjukan surface plot permukaan sampel besi. Selain dari itu, gray value dari citra gambar yang dihasilkan mengalami fluktuasi seiring dengan semakin panjang/besarnya distance (pixels).
References
[2] B. C. Bovas, L. Karunamoorthy, and F. B. Chuan, “Effect of surface roughness and process parameters on mechanical properties of fabricated medical catheters,” Mater. Res. Express, vol. 6, no. 12, p. 125420, Jan. 2020, doi: 10.1088/2053-1591/ab6652.
[3] D. Pradhan, G. Mahobia, K. Chattopadhyay, and V. Singh, “Effect of surface roughness on corrosion behavior of the superalloy IN718 in simulated marine environment,” J. Alloys Compd., vol. 740, Apr. 2018, doi: 10.1016/j.jallcom.2018.01.042.
[4] M. Auinger, P. Ebbinghaus, A. Blümich, and A. Erbe, “Effect of surface roughness on optical heating of metals,” J. Eur. Opt. Soc. - Rapid Publ., vol. 9, no. 0, Art. no. 0, Jan. 2014, doi: 10.2971/jeos.2014.14004.
[5] T. Kovacs and L. Kuzsella, “High Energy Rate Forming Induced Phase Transition in Austenitic Steel,” J. Phys. Conf. Ser., vol. 790, p. 012039, Feb. 2017, doi: 10.1088/1742-6596/790/1/012039.
[6] B. Tatone and G. Grasselli, “A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials,” Rev. Sci. Instrum., vol. 80, p. 125110, Dec. 2009, doi: 10.1063/1.3266964.
[7] J. van Rij, B. Belnap, and P. Ligrani, “Analysis and Experiments on Three-Dimensional, Irregular Surface Roughness,” J. Fluids Eng., vol. 124, p. 671, Sep. 2002, doi: 10.1115/1.1486222.
[8] M. C. Cakir, C. Ensarioglu, and I. Demirayak, “Mathematical modeling of surface roughness for evaluating the effects of cutting parameters and coating material,” J. Mater. Process. Technol. - J Mater Process Technol, vol. 209, pp. 102–109, Jan. 2009, doi: 10.1016/j.jmatprotec.2008.01.050.
[9] M. Thornbush, “Measuring Surface Roughness through the Use of Digital Photography and Image Processing,” Int. J. Geosci., vol. 05, pp. 540–554, Jan. 2014, doi: 10.4236/ijg.2014.55050.
[10] A. M. Keropyan, “Application of non-contact technologies for measuring roughness of interacting surfaces when monitoring friction coefficient,” Mater. Today Proc., Dec. 2020, doi: 10.1016/j.matpr.2020.10.018.
[11] J.-S. Lee, “Evaluation of Surface Roughness of Metal and Alloy Material,” J. Mater. Sci. Chem. Eng., vol. 04, pp. 90–97, Jan. 2016, doi: 10.4236/msce.2016.41013.
[12] B. Muralikrishnan and J. Raja, Eds., “Surface Finish Parameters I: Amplitude, Spacing, Hybrid, and Shape,” in Computational Surface and Roundness Metrology, London: Springer, 2009, pp. 181–190.
[13] J. Das and B. Linke, “Effect of Manual Grinding Operations on Surface Integrity,” Procedia CIRP, vol. 45, pp. 95–98, 2016, doi: 10.1016/j.procir.2016.02.091.
[14] K. C. Anil, M. G. Vikas, B. S. Teja, and K. V. S. Rao, “Effect of cutting parameters on surface finish and machinability of graphite reinforced Al-8011 matrix composite,” IOP Conf. Ser. Mater. Sci. Eng., vol. 191, p. 012025, Apr. 2017, doi: 10.1088/1757-899X/191/1/012025.
[15] E. Gadelmawla, M. Koura, T. Maksoud, I. Elewa, and H. Soliman, “Roughness parameters,” J. Mater. Process. Technol., vol. 123, pp. 133–145, Apr. 2002, doi: 10.1016/S0924-0136(02)00060-2.
[16] “Introduction to Surface Roughness Measurement.” Keyence, [Online]. Available: https://sernia.ru/upload/pdf_files/Introduction%20to%20surface%20roughness%20measurement.pdf.
[17] T. Jeyapoovan and M. Murugan, “Surface roughness classification using image processing,” Measurement, vol. 46, no. 7, pp. 2065–2072, Aug. 2013, doi: 10.1016/j.measurement.2013.03.014.
[18] D. Tuan, V. Thanh Tung, and L. Phuong, “Analyzing 2D Structure Images of Piezoelectric Ceramics Using ImageJ,” Int. J. Mater. Chem., vol. 2014, pp. 88–91, Jan. 2014, doi: 10.5923/j.ijmc.20140404.02.
[19] Rishi Kumari, Narinder Rana, and Rayat Institute of engg information technology ,ropar ,Punjab, “Particle Size and Shape Analysis using Imagej with Customized Tools for Segmentation of Particles,” Int. J. Eng. Res., vol. V4, no. 11, p. IJERTV4IS110211, Nov. 2015, doi: 10.17577/IJERTV4IS110211.
[20] A. Mazzoli and O. Favoni, “Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by Scanning Electron Microscopy and image processing program,” Powder Technol., vol. 225, pp. 65–71, Jul. 2012, doi: 10.1016/j.powtec.2012.03.033.
[21] H. Riafinola, S. Lifitri, M. T. Ginting, and B. Budiana, “Kajian Efektivitas Larutan Etsa NH4OH, FeCl3, dan CuCl2 pada Multilayar Rigid Printed Circuit Board,” J. Appl. Electr. Eng., vol. 3, no. 1, Art. no. 1, Jun. 2019, doi: 10.30871/jaee.v3i1.1395.
Manuscript submission
Submission of a manuscript to the Journal of Applied Electrical Engineering (JAEE) implies that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors, if any, as well as tacitly or explicitly by responsible authorities at the institution where the work was carried out.
The author warrants that his/her contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. The author affirms that the article contains no unfounded or unlawful statements and does not violate the rights of others. If copyrighted works are included, the author bears responsibility to obtain written permission from the copyright owners and to appropriately credit the sources.
The use of general descriptive names, trade names, trademarks, etc. in the publication, even if not specifically identified, does not imply that these names are not protected by the relavant laws and regulation.
Copyright Transfer Agreement
The Copyright Transfer Agreement must be signed and return to the publisher of JAEE before manuscript can be accepted for publication. The Transfer of copyright to JAEE becomes effective if and when the article is accepted for publication. if the submitted manuscript is not accepted by Journal, all rights will returned to the authors of the work.
All articles published in JAEE are protect by copyright, which cover the exclusive and unlimited rights to reproduce and distribute the article in any form of reproduction (printing, electronic media or any other form), as well as the translation rights for all languages and countries, for the full term (including extensions and renewals). No material published in the JAEE may be reproduced photographically or store on microfilm, in electronic databases, video disk, etc., without first obtaining written permission from the publisher.
Author's rights
The author may send or transmit individual copies of the final published version of his/her manuscripts any format, including the PDF, to colleagues upon their specific request provided no fee is charged, and further-provided that there is no systematic distribution of the manuscript, e.g. posting on a listserve, website or automatic delivery. However posting the article on a secure network, not accessible to the public, is permitted.
For other purposes, e.g. publication on his/her own website, the author must use the original author-created version of his/her article, i.e. the original submitted file prior to review. He/she may not use the publisher's PDF version. Furthermore, the author may only post his/her version provided acknowledgement is given to the original source of publication and a link (DOI) is inserted to the published article on the JAEE website. The link must be accompanied by the following text: 'The original publication is available at <insert website link here>'.
The author(s) retain all proprietary rights, other than copyright, such as patent and trademark rights to any process or procedure described in the article. The author(s) have the right to photocopy the article for their own personal use.
An author has the right to use (part of) his/her article in subsequent publication of the authors own works provided that written permission is obtained from the publisher and that proper acknowledgement is made to the original source of publication and the publisher. Any other use or reproduction in a collective work requires a fee and permission from the publisher.
The right to grant or refuse permission to third parties to republish part of the article or translations thereof. However, the publisher except at the direction of the contributor(s) will not refuse such permission.
Warrant
While the information in the JAEE is believed to be true and accurate at the date of its publication, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to material contained herein.