Classification of Brain Tumors by Using a Hybrid CNN-SVM Model
Abstract
Brain tumors are diseases that involve the growth of brain cells, causing abnormalities in the brain region. An MRI scan is a useful tool for tumor detection. Researchers can process the obtained image data to conduct research capable of detecting brain tumor disease. Classifying brain tumors facilitates effort, planning, and accurate diagnosis, enabling the formulation and evaluation of treatment options for a patient with a brain tumor. The research was conducted to classify whether or not there was a tumor in the brain by using a combination of algorithms, namely CNN, to extract features from image data and then use SVM as a classification. CNN is a popular algorithm that deals very effectively with the complexity and variation of image data, whereas SVM is an algorithm for classification that maximizes margins and generalizations to produce accurate classifications. The project's goal is to create a hybrid model that can classify two labels based on image preprocessing processes, feature extraction, and brain tumor image data classification. In this study, the results of the CNN-SVM hybrid were able to obtain the highest score with Adam optimization and learning rate 0.001, accuracy of 98.92%, precision 98.92%, recall 98.92%, and f1-score 98.92%.
References
[2] V. Essianda, A. D. Indrasari, P. Widyastuti, T. Syahla, and R. Rohadi, “Brain Tumor : Molecular Biology, Pathophysiology, and Clinical Symptoms,” Jurnal Biologi Tropis, vol. 23, no. 4, pp. 260–269, Sep. 2023, doi: 10.29303/jbt.v23i4.5585.
[3] World Health Organization, “Brain Health.” Accessed: Jun. 27, 2024. [Online]. Available: https://www.who.int/health-topics/brain-health#tab=tab_1
[4] R. Andre, B. Wahyu, and R. Purbaningtyas, “Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network Dengan Arsitektur Efficientnet-B3,” 2021. [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index
[5] H. Pengobatan Klinis, M. Ghozali, H. Sumarti, K. Kunci, T. Otak, and O. Dewasa, “Pengobatan Klinis Tumor Otak pada Orang Dewasa,” Jurnal Pendidikan Fisika dan Fisika Terapan, vol. 6, no. 1, p. 2020, 2020.
[6] M. N. M. Hakim, A. B. Nugroho, and A. E. Minarno, “Prediksi Tumor Otak Menggunakan Metode Convolutional Neural Network,” Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, vol. 17, no. 1, p. 48, Jul. 2023, doi: 10.30872/jim.v17i1.5246.
[7] K. C. Kirana, A. M. Nidhom, A. F. Fadhlullah, G. Carlos, P. Siregar, and H. Bagus Begananda, “TEKNO Jurnal Teknologi Elektro dan Kejuruan Klasifikasi Penyakit Tumor Otak Menggunakan K-Nearest Neighbour Berbasis Grey Level Coocurence Matrix,” 2023. [Online]. Available: http://journal2.um.ac.id/index.php/tekno
[8] M. S. Liyananta, M. Shata, N. Latifah, F. Bimantoro, and T. Informatika, “Program Studi Teknik Informatika,” 2024. [Online]. Available: https://www.kaggle.com/datasets/thomasdubail/brain-tumors-256x256
[9] A. Agung Mujiono, E. Yulia Puspaningrum Informatika, U. Pembangunan Nasional, J. Timur Jl Raya Rungkut Madya, and G. Anyar, “Implementasi Model Hybrid CNN-SVM Pada Klasifikasi Kondisi Kesegaran Daging Ayam,” 2024.
[10] M. N. Winnarto, M. Mailasari, and A. Purnamawati, “Klasifikasi Jenis Tumor Otak Menggunakan Arsitekture Mobilenet V2,” Jurnal SIMETRIS, vol. 13, no. 2, 2022.
[11] A. I. C. Sukandar, F. T. Anggraeny, and M. H. P. Swari, “3557-Article Text-12948-1-10-20240610,” ANTIVIRUS: Jurnal Ilmiah Teknik Informatika, vol. 18, no. 1, 2024.
[12] R. Rakhman Wahid, F. Tri Anggraeni, and B. Nugroho, “Brain Tumor Classification with Hybrid Algorithm Convolutional Neural Network-Extreme Learning Machine,” 2021.
[13] K. C. Kirana, A. M. Nidhom, A. F. Fadhlullah, G. Carlos, P. Siregar, and H. Bagus Begananda, “TEKNO Jurnal Teknologi Elektro dan Kejuruan Klasifikasi Penyakit Tumor Otak Menggunakan K-Nearest Neighbour Berbasis Grey Level Coocurence Matrix,” 2023. [Online]. Available: http://journal2.um.ac.id/index.php/tekno
[14] R. Yohannes and M. E. Al Rivan, “Klasifikasi_Jenis_Kanker_Kulit_Menggunakan_CNN-SVM,” Jurnal Algoritme, vol. 2, no. 2, 2022.
[15] B. W. Kurniadi, H. Prasetyo, G. L. Ahmad, B. Aditya Wibisono, and D. Sandya Prasvita, Analisis Perbandingan Algoritma SVM dan CNN untuk Klasifikasi Buah. 2021.
[16] A. Sandy Wardhani, F. Tri Anggraeny, and A. Mustika Rizki, “Penerapan Model Hibrida Cnn-Knn Untuk Klasifikasi Penyakit Mata,” 2024.
[17] S. Firmansyah, J. Gaol, and S. B. Susilo, “Comparison of SVM and Decision Tree Classifier with Object Based Approach for Mangrove Mapping to Sentinel-2B Data on Gili Sulat, Lombok Timur,” Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan, vol. 9, no. 3, pp. 746–757, 2019, doi: 10.29244/jpsl.9.3.746-757.
[18] Y. Amrozi, D. Yuliati, A. Susilo, N. Novianto, and R. Ramadhan, “Klasifikasi Jenis Buah Pisang Berdasarkan Citra Warna dengan Metode SVM,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 11, no. 3, pp. 394–399, Dec. 2022, doi: 10.32736/sisfokom.v11i3.1502.
[19] M. Muchtar and R. A. Muchtar, “Perbandingan Metode Knn Dan Svm Dalam Klasifikasi Kematangan Buah Mangga Berdasarkan Citra Hsv Dan Fitur Statistik,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, Apr. 2024, doi: 10.23960/jitet.v12i2.4010.
[20] Y. Yohannes, D. Udjulawa, and F. Febbiola, “Klasifikasi Lukisan Karya Van Gogh Menggunakan Convolutional Neural Network-Support Vector Machine,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 7, no. 1, Apr. 2021, doi: 10.28932/jutisi.v7i1.3399.
[21] A. Desiani, Irmeilyana, H. Hanum, and A. Yuli, “Penerapan Metode Support Vector Machine Dalam Klasifikasi Bunga Iris,” IJAI (Indonesian Journal of Applied Informatics), vol. 7, no. 1, 2022.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Penulis yang telah mempublikasikan artikel pada JAIC menyatakan setuju bahwa:
1. Artikel belum dan tidak pernah dipublikasikan sebelumnya pada jurnal ilmiah lain, prosiding ataupun jurnal elektronik lainnya.
2. Artikel yang telah diserahkan menjadi hak penuh kepada pengelola JAIC Politeknik Negeri Batam
3. Artikel diperbolehkan untuk dishare ke khalayak untuk meningkatkan produktivitas rujukan dan sitasi dari naskah yang telah terbit.