Application of Machine Learning Algorithm for Osteoporosis Disease Prediction System
Abstract
Osteoporosis is a condition characterized by decreased bone density, leading to fragile and easily fractured bones. This disease is a significant concern as it can cause disability, fractures, and death, particularly in the elderly population. Early detection of osteoporosis is crucial to prevent disease progression through timely interventions. This study aims to develop a machine learning-based prediction system capable of detecting osteoporosis using three different algorithms, Random Forest, Support Vector Machine (SVM), and Gradient Boosting. The study involves analyzing and comparing the performance of these algorithms based on evaluation metrics such as Accuracy, Precision, Recall, and F1 Score. The data used is processed in two formats, namely ordinal and one-hot encoding, to assess the impact of encoding techniques on model performance. The results show that the Gradient Boosting algorithm performs the best on both types of data, with the highest Accuracy of 91.07% on the one-hot encoded data. Meanwhile, SVM and Random Forest also demonstrate competitive performance but with slightly lower results. This study concludes that Gradient Boosting is the most effective algorithm for osteoporosis prediction in this research. These findings can serve as a foundation for further development in the early detection of osteoporosis and support more effective and efficient prevention and treatment efforts.
References
[2] D. S. Wicaksono and R. Y. Maulana, “Manfaat Ekstrak Dandelion Dalam Mencegah Osteoporosis,” Jurnal Penelitian Perawat Profesional, vol. 2, no. 2, 2020, doi: 10.37287/jppp.v2i2.87.
[3] N. Sani, Y. Yuniastini, A. Putra, and Y. Yuliyana, “Tingkat Pengetahuan Osteoporosis Sekunder dan Perilaku Pencegahan Mahasiswa Universitas Malahayati,” Jurnal Ilmiah Kesehatan Sandi Husada, vol. 11, no. 1, 2020, doi: 10.35816/jiskh.v11i1.236.
[4] V. V. Khanna et al., “A decision support system for osteoporosis risk prediction using machine learning and explainable artificial intelligence,” Heliyon, vol. 9, no. 12, Dec. 2023, doi: 10.1016/j.heliyon.2023.e22456.
[5] M. D. Purbolaksono, M. Irvan Tantowi, A. Imam Hidayat, and A. Adiwijaya, “Perbandingan Support Vector Machine dan Modified Balanced Random Forest dalam Deteksi Pasien Penyakit Diabetes,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, 2021, doi: 10.29207/resti.v5i2.3008.
[6] E. S. Patasik and S. Yulianto, “Classification Of Regional Languages Using Methods Gradient Boots And Random Forest,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 5, 2023, doi: 10.52436/1.jutif.2023.4.5.1459.
[7] A. Algoritma et al., “Analisis Algoritma Klasifikasi Untuk Mengidentifikasi Potensi Risiko Kesehatan Ibu Hamil,” Journal of Applied Computer Science and Technology, vol. 5, no. 1, pp. 120–127, Jun. 2024, doi: 10.52158/JACOST.V5I1.809.
[8] S. P. Nainggolan and A. Sinaga, “Comparative Analysis Of Accuracy Of Random Forest And Gradient Boosting Classifier Algorithm For Diabetes Classification,” Sebatik, vol. 27, no. 1, pp. 97–102, Jun. 2023, doi: 10.46984/sebatik.v27i1.2157.
[9] C. Z. V. Junus, T. Tarno, and P. Kartikasari, “Klasifikasi Menggunakan Metode Support Vector Machine Dan Random Forest Untuk Deteksi Awal Risiko Diabetes Melitus,” Jurnal Gaussian, vol. 11, no. 3, pp. 386–396, Jan. 2023, doi: 10.14710/j.gauss.11.3.386-396.
[10] S. D. Wahyuni and R. H. Kusumodestoni, “Optimalisasi Algoritma Support Vector Machine (SVM) Dalam Klasifikasi Kejadian Data Stunting,” Bulletin of Information Technology (BIT), vol. 5, no. 2, pp. 56–64, 2024, doi: 10.47065/bit.v5i2.1247.
[11] Kairos Abinaya Susanto et al., “Implementasi Bahasa Python Dalam Menganalisis Pengaruh Rokok Terhadap Risiko Pasien Terkena Penyakit Stroke,” Jurnal Publikasi Teknik Informatika, vol. 2, no. 2, pp. 48–58, May 2023, doi: 10.55606/jupti.v2i2.1722.
[12] S. Ana, R. Kurniawan, and A. Nazir, “Pengklasteran Risiko Covid-19 Di Riau Menggunakan Teknik One Hot Encoding Dan Algoritma K-Means Clustering,” Jurnal Informasi dan Komputer, vol. 10, no. 1, 2022, doi: 10.35959/jik.v10i1.291.
[13] I. Lestari, M. Akbar, and B. Intan, “Perbandingan Algoritma Machine Learning Untuk klasifikasi Amenorrhea,” Journal of Computer and Information Systems Ampera, vol. 4, no. 1, pp. 32–43, Jan. 2023, doi: 10.51519/JOURNALCISA.V4I1.371.
[14] A. Febriansyah Istianto, A. Id Hadiana, and F. Rakhmat Umbara, “Prediksi Curah Hujan Menggunakan Metode Categorical Boosting (Catboost),” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 4, 2024, doi: 10.36040/jati.v7i4.7304.
[15] R. Safdari, A. Deghatipour, M. Gholamzadeh, and K. Maghooli, “Applying data mining techniques to classify patients with suspected hepatitis C virus infection,” Intelligent Medicine, vol. 2, no. 4, 2022, doi: 10.1016/j.imed.2021.12.003.
[16] S. Dewi, H. A. Al Kautsar, and D. Y. Utami, “Prediksi Keberhasilan Pemasaran Layanan Jasa Perbankan Mengunnakan Algoritma Logistic Regreesion,” Computer Science (CO-SCIENCE), vol. 3, no. 2, 2023, doi: 10.31294/coscience.v3i2.1931.
[17] T. Tan, H. Sama, G. Wijaya, and O. E. Aboagye, “Studi Perbandingan Deteksi Intrusi Jaringan Menggunakan Machine Learning: (Metode SVM dan ANN),” Jurnal Teknologi dan Informasi, vol. 13, no. 2, pp. 152–164, Aug. 2023, doi: 10.34010/jati.v13i2.10484.
[18] L. Syafaâ€TMah, Z. Zulfatman, I. Pakaya, and M. Lestandy, “Comparison of Machine Learning Classification Methods in Hepatitis C Virus,” Jurnal Online Informatika, vol. 6, no. 1, pp. 73–78, Jun. 2021, doi: 10.15575/JOIN.V6I1.719.
[19] K. Auliyatuz Zahroh et al., “Perbandingan Ekstraksi Fitur Untuk Klasifikasi COVID-19, MERS, dan SARS Menggunakan Algoritma Extreme Learning Machine,” Jurnal Fourier, vol. 13, no. 1, pp. 30–41, Apr. 2024, doi: 10.14421/FOURIER.2024.131.30-41.
[20] J. Homepage et al., “Implementasi Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor untuk Klasifikasi Penyakit Ginjal Kronik,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 710–718, Apr. 2024, doi: 10.57152/MALCOM.V4I2.1229.
[21] D. Nurlaily, Y. P. Irfandi, N. Santoso, S. Qomariyah, and D. Wibowo, “Classification of Hepatitis Patients Using Logistic Regression and Support Vector Machines Methods,” Jurnal Pendidikan Matematika (Kudus), vol. 5, no. 2, p. 237, Dec. 2022, doi: 10.21043/jpmk.v5i2.17052.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Penulis yang telah mempublikasikan artikel pada JAIC menyatakan setuju bahwa:
1. Artikel belum dan tidak pernah dipublikasikan sebelumnya pada jurnal ilmiah lain, prosiding ataupun jurnal elektronik lainnya.
2. Artikel yang telah diserahkan menjadi hak penuh kepada pengelola JAIC Politeknik Negeri Batam
3. Artikel diperbolehkan untuk dishare ke khalayak untuk meningkatkan produktivitas rujukan dan sitasi dari naskah yang telah terbit.