Donor Segmentation Analysis Using the RFM Model and K-Means Clustering to Optimize Fundraising Strategies
Abstract
This study aims to segment donors using the Recency, Frequency, Monetary (RFM) model and the K-Means algorithm to optimize fundraising strategies. The RFM model is used to measure donor engagement through three dimensions: Recency (the last time a donation was made), Frequency (the frequency of donations), and Monetary (the amount of donations). By utilizing RFM scores, donors are then grouped using the K-means algorithm to generate more specific donor segments. This study was conducted using donation data from a non-profit organization, focusing on strategies to improve donor loyalty and donation frequency. The segmentation results identified several key segments, including Loyal Donors, New Donors, Potential Donors, and Low-Priority Donors. Each segment exhibits different donation behavior characteristics and requires a different strategic approach. The implementation of these segmentation results is expected to help the organization design more effective communication strategies and donation programs, as well as improve donor retention and lifetime value. Additionally, this study identifies the potential for enhancing the analytical model for broader applications in the future. This research contributes to non-profit organizations by offering a more efficient approach to managing donor relationships.
References
[2] M. Martono and M. Syafrullah, “Pengklasteran Dan Segmentasi Karakteristik Donatur Sedekah Daring Dengan Teknik Penambangan Data,” INOVTEK Polbeng - Seri Inform., vol. 9, no. 1, pp. 366–380, 2024, doi: 10.35314/isi.v9i1.4223.
[3] S. E. Jamal, “Analisis RFM dan Algoritma K-Means untuk Clustering Loyalitas Customer RFM Analysis and K-Means Algorithm for Customer Loyalty Clustering,” Kom J. ENERGY (Jurnal Ilm. Ilmu-ilmu Tek., vol. 9, no. 1, p. 18, 2019, [Online]. Available: https://doi.org/10.51747/energy
[4] P. I. Pangestu, T. I. Hermanto, and D. Irmayanti, “Analisis Segmentasi Pelanggan Berbasis Model Recency Frequency Dan Monetary (Rfm) Menggunakan Algoritma K-Means,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3s1, pp. 1486–1492, 2023, doi: 10.23960/jitet.v11i3s1.3396.
[5] Basri, W. Gata, and Risnandar, “Customer Loyalty Analysis Based on the Recency, Frequency and Monetary (RFM) and Decision Tree Models At Pt. Solo,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 5, pp. 943–950, 2020, doi: 10.25126/jtiik.202072284.
[6] A. Madani, A. Rahmah, F. Nurunnisa, and A. Elia, “SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat Customer Segmentation at BC HNI 2 Pekanbaru by Applying the K-Medoids Algorithm and Recency, Frequency, Monetary (RFM) Model Segmentasi Pelanggan pada BC HNI 2 Pekanbaru dengan Menerapkan Algoritma K-Medoids dan Model Recency, Frequency, Monetery (RFM).” [Online]. Available: https://journal.irpi.or.id/index.php/sentimas
[7] F. M. Pranata, S. H. Wijoyo, and N. Y. Setiawan, “Analisis Performa Algoritma K-Means dan DBSCAN Dalam Segmentasi Pelanggan Dengan Pendekatan Model RFM,” vol. 1, no. 1, pp. 1–9, 2017.
[8] A. Pramudiansyah and H. Munte, “SEGMENTASI PELANGGAN MENGGUNAKAN ALGORITMA K-MEANS BERDASARKAN MODEL RECENCY FREQUENCY MONETARY,” vol. 7, no. 2, 2021, [Online]. Available: http://ejournal.fikom-unasman.ac.id
[9] A. Febriani and S. A. Putri, “Segmentasi Konsumen Berdasarkan Model Recency, Frequency, Monetary dengan Metode K-Means,” JIEMS (Journal Ind. Eng. Manag. Syst., vol. 13, no. 2, Sep. 2020, doi: 10.30813/jiems.v13i2.2274.
[10] N. H. Harani, C. Prianto, and F. A. Nugraha, “Segmentasi Pelanggan Produk Digital Service Indihome Menggunakan Algoritma K-Means Berbasis Python,” J. Manaj. Inform., 2020, doi: 10.34010/jamika.v10i2.
[11] A. R. Mulyawan, D. Gunawan, H. Basri, S. Alfarizi, and N. Ichsan, “Penerapan K-Medoids Clustering Dan Silhouette Method Untuk Strategi Pemasaran Program Donasi Pada Lembaga Amil Zakat,” Inf. Syst. Educ. Prof. J. Inf. Syst., vol. 8, no. 1, p. 107, 2023, doi: 10.51211/isbi.v8i1.2468.
[12] D. P. Hidayatullah1, R. I. Rokhmawati2, and A. R. Perdanakusuma3, “Analisis Pemetaan Pelanggan Potensial Menggunakan Algoritma K-Means dan LRFM Model Untuk Mendukung Strategi Pengelolaan Pelanggan (Studi Pada Maninjau Center Kota Malang),” 2018. [Online]. Available: http://j-ptiik.ub.ac.id
[13] Putra M, Julhandri, Khoiru I, and Monalisa S, “Segmentasi pelanggan feandra cake,” 2020.
[14] J. S. Lee and S. P. Jun, “Privacy-preserving data mining for open government data from heterogeneous sources,” Gov. Inf. Q., vol. 38, no. 1, p. 101544, 2021, doi: 10.1016/j.giq.2020.101544.
[15] B. E. Adiana, I. Soesanti, and A. E. Permanasari, “Analisis Segmentasi Pelanggan Menggunakan Kombinasi RFM Model dan Teknik Clustering,” no. 2, 2018, doi: 10.21460/jutei.2017.21.76.
[16] N. Ahsina, F. Fatimah, and F. Rachmawati, “Analisis Segmentasi Pelanggan Bank Berdasarkan Pengambilan Kredit Dengan Menggunakan Metode K-Means Clustering,” J. Ilm. Teknol. Infomasi Terap., vol. 8, no. 3, 2022, doi: 10.33197/jitter.vol8.iss3.2022.883.
[17] A. A. Firdaus, N. Iksan, D. N. Sadiah, L. Sagita, and D. Setiawan, “Penerapan Algoritma Apriori untuk Prediksi Kebutuhan Suku Cadang Mobil,” J. Sist. dan Teknol. Inf., vol. 9, no. 1, p. 13, Jan. 2021, doi: 10.26418/justin.v9i1.41151.
[18] M. Jordy, A. Triayudi, and I. D. Sholihati, “Analisis Segmentasi Recency dan Customer Value Pada AVANA Indonesia Dengan Algoritma K-Means dan Model RFM (Recency, Frequency and Monetary),” J. Inf. Syst. Res., vol. 4, no. 2, pp. 579–589, 2023, doi: 10.47065/josh.v4i2.2950.
[19] A. Supriyadi, A. Triayudi, and I. D. Sholihati, “Perbandingan Algoritma K-Means Dengan K-Medoids Pada Pengelompokan Armada Kendaraan Truk Berdasarkan Produktivitas,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 2, pp. 229–240, 2021, doi: 10.29100/jipi.v6i2.2008.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Penulis yang telah mempublikasikan artikel pada JAIC menyatakan setuju bahwa:
1. Artikel belum dan tidak pernah dipublikasikan sebelumnya pada jurnal ilmiah lain, prosiding ataupun jurnal elektronik lainnya.
2. Artikel yang telah diserahkan menjadi hak penuh kepada pengelola JAIC Politeknik Negeri Batam
3. Artikel diperbolehkan untuk dishare ke khalayak untuk meningkatkan produktivitas rujukan dan sitasi dari naskah yang telah terbit.