Implementation of AlexNet and Xception Architectures for Disease Detection in Orange Plants

  • Venus Al Fatah Universitas Teknologi Yogyakarta
  • Moh. Ali Romli Universitas Teknologi Yogyakarta

Abstract

Oranges are one of Indonesia's primary horticultural commodities, with production increasing each year. However, pest and disease infestations often go undetected, leading to significant reductions in crop yields. This study implements Convolutional Neural Network (CNN) technology to identify diseases in orange plants using two architectures: AlexNet and Xception. The implementation results show that the Xception architecture achieved a high accuracy of 96% after 100 training epochs, indicating its effectiveness in disease detection tasks. This research highlights the potential of integrating CNN technology, particularly the Xception model, into web-based systems for disease detection in orange plants. Such systems can assist farmers in maintaining crop health, improving productivity, and ensuring harvest quality.

References

[1] I. Nabila, N. Apriani, D. Nur Trisni, and N. Agus Setiawan, “Pengaruh Teknik Pengemasan Pada Komoditas Hortikultura Buah Jeruk,” 2024.
[2] R. H. Ariesdianto, Z. E. Fitri, A. Madjid, and A. M. N. Imron, “Identifikasi Penyakit Daun Jeruk Siam Menggunakan K-Nearest Neighbor,” Jurnal Ilmu Komputer dan Informatika, vol. 1, no. 2, pp. 133–140, Nov. 2021, doi: 10.54082/jiki.14.
[3] D. Irfansyah et al., “Arsitektur Convolutional Neural Network (CNN) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi,” vol. 6, no. 2, 2021, [Online]. Available: https://data.mendeley.com/datasets/c5yvn32dzg/2.
[4] B. S. Acarya, A. Muhaimin, and K. M. Hindrayani, “Identifikasi Penyakit Daun Jeruk Siam Menggunakan Convolutional Neural Network (CNN) dengan Arsitektur EfficientNet,” G-Tech: Jurnal Teknologi Terapan, vol. 8, no. 2, pp. 1040–1048, Apr. 2024, doi: 10.33379/gtech.v8i2.4120.
[5] I. Awaludin et al., “Analisis Kinerja ResNet-50 dalam Klasifikasi Penyakit pada Daun Kopi Robusta,” Jurnal Informatika, vol. 9, no. 2, 2022, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ji
[6] J. Vicky, F. Ayu, and B. Julianto, “Implementasi Pendeteksi Penyakit pada Daun Alpukat Menggunakan Metode CNN.”
[7] A. Bagas Prakosa and dan Radius Tanone, “Implementasi Model Deep Learning Convolutional Neural Network (CNN) Pada Citra Penyakit Daun Jagung Untuk Klasifikasi Penyakit Tanaman,” 2023. [Online]. Available: https://www.kaggle.com/datasets/n
[8] D. I. Swasono, M. Abuemas, R. Wijaya, and A. Hidayat, “Klasifikasi Penyakit pada Citra Buah Jeruk Menggunakan Convolutional Neural Networks (CNN) dengan Arsitektur Alexnet,” 2023. [Online]. Available: https://www.kaggle.com/datasets/jonathansilva2020/orange-
[9] G. Thiodorus, A. Prasetia, L. A. Ardhani, and N. Yudistira, “Klasifikasi citra makanan/non makanan menggunakan metode Transfer Learning dengan model Residual Network,” Teknologi, vol. 11, no. 2, pp. 74–83, Jul. 2021, doi: 10.26594/teknologi.v11i2.2402.
[10] P. Musa, W. K. Anam, S. B. Musa, W. Aryunani, R. Senjaya, and P. Sularsih, “Pembelajaran Mendalam Pengklasifikasi Ekspresi Wajah Manusia dengan Model Arsitektur Xception pada Metode Convolutional Neural Network,” Rekayasa, vol. 16, no. 1, pp. 65–73, Apr. 2023, doi: 10.21107/rekayasa.v16i1.16974.
[11] E. Turnip and A. F. Rozi, “Analisis Perbandingan Arsitektur Convolutional Neural Network pada Klasifikasi Jenis Penyakit Daun Padi,” Jurnal ProTekInfo |, vol. 11, no. 2, 2024.
[12] M. Farij Amrulloh et al., “Klasifikasi Penyakit Daun Bawang Menggunakan Algoritma CNN Xception Penulis Korespondensi,” Online, 2024.
[13] R. A. Putri et al., “Model Deep Learning Untuk Klasifikasi Objek Pada Gambar Fisheye,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 3, pp. 519–528, Jul. 2024, doi: 10.25126/jtiik.938047.
[14] M. Ezar, A. Rivan, D. Alwyn, and G. Riyadi, “53-61 Dokumen diterima pada 08 Februari,” 2021. [Online]. Available: https://jurnal.pcr.ac.id/index.php/jkt/
[15] Y. Brianorman and R. Munir, “Perbandingan Pre-Trained CNN: Klasifikasi Pengenalan Bahasa Isyarat Huruf Hijaiyah,” J. Sistem Info. Bisnis, vol. 13, no. 1, pp. 52–59, Jul. 2023, doi: 10.21456/vol13iss1pp52-59.
[16] R. Kurniawan, P. B. Wintoro, Y. Mulyani, and M. Komarudin, “Implementasi Arsitektur Xception Pada Model Machine Learning Klasifikasi Sampah Anorganik,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 2, Apr. 2023, doi: 10.23960/jitet.v11i2.3034.
Published
2024-11-20
How to Cite
AL FATAH, Venus; ROMLI, Moh. Ali. Implementation of AlexNet and Xception Architectures for Disease Detection in Orange Plants. JOURNAL OF APPLIED INFORMATICS AND COMPUTING, [S.l.], v. 8, n. 2, p. 574-579, nov. 2024. ISSN 2548-6861. Available at: <http://704209.wb34atkl.asia/index.php/JAIC/article/view/8700>. Date accessed: 28 nov. 2024. doi: https://doi.org/10.30871/jaic.v8i2.8700.
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.