The Effects of Preprocessing Techniques on Nasnetmobile’s Performance for Classifying Knee Osteoarthritis Based on the Kellgren-Lawrence System

  • Marcell Jeremy Wiradinata Universitas Ciputra Surabaya
  • Daniel Martomanggolo Wonohadidjojo Universitas Ciputra Surabaya

Abstract




Knee osteoarthritis (KOA) is a degenerative joint disorder characterized by the progressive deterioration of protective cartilage at the ends of bones, leading to pain and limited mobility. Deep learning provides an effective approach to classify whether X-ray images indicate the presence of KOA; however, dataset preprocessing techniques can enhance the efficacy of deep learning models. This study highlights the importance of preprocessing techniques in improving image contrast, particularly in utilizing the NASNetMobile model to assess the severity of KOA through X-ray images. KOA classification based on the Kellgren-Lawrence system consists of five severity levels; however, simplifying it into two categories can improve the performance of deep learning models. By fine-tuning parts of the NASNetMobile model and using the Nadam optimizer, the model initially achieved only 59% validation accuracy. However, by applying various preprocessing techniques, the model's validation accuracy improved to 80%.




References

[1] J. D. Steinmetz et al., “Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021,” The Lancet Rheumatology, vol. 5, no. 9, pp. e508–e522, Sep. 2023, doi: 10.1016/S2665-9913(23)00163-7.
[2] B. Kathryn, “Osteoarthritis IN OLDER ADULTS: Current Treatments,” Journal of Gerontological Nursing, vol. 31, no. 5, pp. 11–19, May 2005, doi: 10.3928/0098-9134-20050501-05.
[3] K. Üreten, H. Erbay, and H. H. Maraş, “Detection of hand osteoarthritis from hand radiographs using convolutional neural networks with transfer learning,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 28, no. 5, pp. 2968–2978, 2020, doi: 10.3906/ELK-1912-23.
[4] A. Xuan et al., “The application of machine learning in early diagnosis of osteoarthritis: a narrative review,” Therapeutic Advances in Musculoskeletal Disease, vol. 15, Jan. 2023, doi: 10.1177/1759720X231158198.
[5] A. Tiwari, M. Poduval, and V. Bagaria, “Evaluation of artificial intelligence models for osteoarthritis of the knee using deep learning algorithms for orthopedic radiographs,” World J Orthop, vol. 13, no. 6, pp. 603–614, Jun. 2022, doi: 10.5312/wjo.v13.i6.603.
[6] V. K. V, V. Kalpana, and G. H. Kumar, “Evaluating the efficacy of deep learning models for knee osteoarthritis prediction based on Kellgren-Lawrence grading system,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 5, p. 100266, Sep. 2023, doi: 10.1016/j.prime.2023.100266.
[7] V. V. Kishore, K. Sahithi, K. S. J. Reddy, K. Akash, K. S. Jyothy, and S. Yalavarthi, “Enhanced Knee Osteoarthritis Grading: Transfer Learning with Pre-Trained CNN’s For Swift Diagnosis,” in Proceedings of the International Conference on Computational Innovations and Emerging Trends (ICCIET 2024), vol. 112, K. R. Madhavi, P. Subba Rao, J. Avanija, I. L. Manikyamba, and B. Unhelkar, Eds., in Advances in Computer Science Research, vol. 112. , Dordrecht: Atlantis Press International BV, 2024, pp. 4–20. doi: 10.2991/978-94-6463-471-6_2.
[8] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl, “On Empirical Comparisons of Optimizers for Deep Learning,” Jun. 16, 2020, arXiv: arXiv:1910.05446. Accessed: Oct. 22, 2024. [Online]. Available: http://arxiv.org/abs/1910.05446
[9] T. Dozat, “INCORPORATING NESTEROV MOMENTUM INTO ADAM,” 2016.
[10] A. Ezgi and A. Onan, “Automatic Knee Osteoarthritis Severity Grading using Deep Neural Networks: Comparative Analysis of Network Architectures and Optimization Functions,” ICAENS, vol. 1, no. 1, pp. 197–203, Jul. 2023, doi: 10.59287/icaens.992.
[11] H. A. Alshamrani, M. Rashid, S. S. Alshamrani, and A. H. D. Alshehri, “Osteo-NeT: An Automated System for Predicting Knee Osteoarthritis from X-ray Images Using Transfer-Learning-Based Neural Networks Approach,” Healthcare (Switzerland), vol. 11, no. 9, May 2023, doi: 10.3390/healthcare11091206.
[12] S. A. El-Ghany, M. Elmogy, and A. A. A. El-Aziz, “A fully automatic fine tuned deep learning model for knee osteoarthritis detection and progression analysis,” Egyptian Informatics Journal, vol. 24, no. 2, pp. 229–240, Jul. 2023, doi: 10.1016/j.eij.2023.03.005.
[13] P. Chen, “Knee Osteoarthritis Severity Grading Dataset,” vol. 1, Sep. 2018, doi: 10.17632/56rmx5bjcr.1.
[14] A. S. Mohammed, A. A. Hasanaath, G. Latif, and A. Bashar, “Knee Osteoarthritis Detection and Severity Classification Using Residual Neural Networks on Preprocessed X-ray Images,” Diagnostics, vol. 13, no. 8, p. 1380, Apr. 2023, doi: 10.3390/diagnostics13081380.
Published
2024-11-26
How to Cite
WIRADINATA, Marcell Jeremy; WONOHADIDJOJO, Daniel Martomanggolo. The Effects of Preprocessing Techniques on Nasnetmobile’s Performance for Classifying Knee Osteoarthritis Based on the Kellgren-Lawrence System. JOURNAL OF APPLIED INFORMATICS AND COMPUTING, [S.l.], v. 8, n. 2, p. 616-622, nov. 2024. ISSN 2548-6861. Available at: <http://704209.wb34atkl.asia/index.php/JAIC/article/view/8713>. Date accessed: 28 nov. 2024. doi: https://doi.org/10.30871/jaic.v8i2.8713.
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.