Pendeteksian Objek Hasil Pengepresan Kaleng dan Botol dengan Metode You Only Look Once (YOLO) yang Diaplikasikan pada Mesin Sortir Pembelajaran PBL

  • Diono Diono Jurusan Teknik Elektro, Program Studi Teknik Mekatronika, Politeknik Negeri Batam
  • M. Jaka Wimbang Wicaksono Jurusan Teknik Elektro, Program Studi Teknik Mekatronika, Politeknik Negeri Batam
  • Adlian Jefiza Jurusan Teknik Elektro, Program Studi Teknik Mekatronika, Politeknik Negeri Batam
  • Dimas Rama Prayudha Jurusan Teknik Elektro, Program Studi Teknik Mekatronika, Politeknik Negeri Batam

Abstract

Image Processing is a technique of processing images with the input of an image and producing an image as well. One of the functions of Image Processing that the author wants to apply is the detection of an object from a still image or a moving image. In this application, the object to be identified by the author will be applied to the PBL sorting machine in the form of cans and bottles. In designing this system, the You Only Look Once (YOLO) method is used and several libraries. YOLO is an algorithm for detecting an object using an artificial neural network (ANN) from an image where this network divides the image into several regions and predicts each bounding box and probability for each region of the image. The author also uses a webcam to detect the object and a Servo Motor as a sorter on the PBL Sorting Machine. The result of this final project is that the system can detect objects cans and bottles properly and produce precise accuracy and is able to move the sorter based on the output data from the detection results.

References

[1] H. Mulyawan, M. Z. H. Samsono, and Setiawardhana, “Identifikasi Dan Tracking Objek Berbasis Image,” pp. 1–5, 2011.
[2] I. H. Al amin and A. Aprilino, “Implementasi Algoritma Yolo Dan Tesseract Ocr Pada Sistem Deteksi Plat Nomor Otomatis,” J. Teknoinfo, vol. 16, no. 1, p. 54, 2022, doi: 10.33365/jti.v16i1.1522.
[3] F. Sindy, “Pendeteksian Objek Manusia Secara Realtime Dengan Metode MobileNet-SSD Menggunakan Movidius Neural Stick pada Raspberry Pi,” p. 77, 2019.
[4] Faradiba, “Penggunaan Aplikasi Visual C
++ Untuk Pemrograman Komputer,” 2019.
[5] M. Ghazali, “Menggunakan TCP Socket”.
[6] G. Plastiras, C. Kyrkou, and T. Theocharides, “Efficient convnet-based object detection for unmanned aerial vehicles by selective tile processing,” ACM Int. Conf. Proceeding Ser., 2018, doi: 10.1145/3243394.3243692.
[7] M. L. Nazilly, B. Rahmat, and E. Y. Puspaningrum, “Implementasi Algoritma Yolo (You Only Look Once) Untuk Deteksi Api,” J. Inform. dan Sist. Inf., vol. 1, no. 1, pp. 81–91, 2020.
[8] G. Devira Ramady, A. Suherman, T. Suci Ramadhanti, and Herlina, “Perancangan Aplikasi Digital Menu Kafe Coffe 86 Berbasis Desktop Menggunakan Visual Studio 2010,” Pros. Semin. Nas. Teknoka, vol. 4, no. 2502, pp. I63–I69, 2019, doi: 10.22236/teknoka.v4i0.4192.
[9] Zulfikar, I. Mawardi, and Mawardi, “Pembuatan Mesin Sortasi Biji Kopi Menggunakan Mekanisme Getar dengan Daya 1 HP,” J. Mesin Sains Terap., vol. 3, no. 1, pp. 29–30, 2019.
[10] B. A. B. Li and T. Pustaka ,“http://www.robotistan.com/arduino-uno-r3-clone-with-usb-cable-usb-chip- ch340 ),” pp. 5–24, 2012.
[11] K. Denpasar, “3 iMADE,” vol. 2, no. 2, pp. 126–135, 2019.
[12] W. Suparno and A. Jalil, “Sensor Multi-Modal Untuk Deteksi Gerak Objek Pada Sistem Keamanan Rumah Berbasis Komunikasi Node Robot Operating System Multi-Modal Sensor for Object Motion Detection on Home Security System Based on Robot Operating System Nodes Communication,” J. Elektro Luceat, vol. 7, no. 1, pp. 1–9, 2021.
[13] A. Sukusvieri, “Implementasi Metode Single Shot Detector untuk Pengenalan Wajah,” Univ. Din., 2020.
[14] Ecia Meilonna, “UNIVERSITAS NEGERI SUMATERA UTARA Poliklinik UNIVERSITAS NEGERI SUMATERA UTARA,” J. Pembang. Wil. Kota, vol. 1, no. 3, pp. 82–91,2018.
Published
2024-03-27
How to Cite
DIONO, Diono et al. Pendeteksian Objek Hasil Pengepresan Kaleng dan Botol dengan Metode You Only Look Once (YOLO) yang Diaplikasikan pada Mesin Sortir Pembelajaran PBL. JURNAL INTEGRASI, [S.l.], v. 16, n. 1, p. 1-10, mar. 2024. ISSN 2548-9828. Available at: <http://704209.wb34atkl.asia/index.php/JI/article/view/4598>. Date accessed: 28 nov. 2024. doi: https://doi.org/10.30871/ji.v16i1.4598.