SISTEM PENDINGINAN AIR UNTUK PANEL SURYA DENGAN METODE FUZZY LOGIC
Abstract
Sun light is one form of energy from natural resources. These solar natural resources have been widely used to supply electrical power in communication satellites through solar cells. This solar cell can produce unlimited amounts of electrical energy directly taken from the sun. The solar panel itself has the maximum body temperature which influences the output of the solar panel. Solar cell panels have a decreased ability to generate electricity if it overheats or goes through the limits of effectiveness. Therefore, a cooling tower system is developed using the Fuzzy Logic method through this study with the aim of maximizing the efficiency of solar cell panels in generating electricity and analyzing Solar Panel systems( Photovoltaic). The data analyzed are: 1) The method of cooling solar panels using the cooling tower system with fuzzy logic methods, 2) Efficiency of Solar Cell Panels in generating electricity, 3) Electric power produced by solar cell panels.
The results of this study explain that the use of fuzzy logic can regulate the speed of water for cooling on panels so that it can be said that the cooling system for solar panels is suitable for use in the tropics, because sunlight is very abundant and is in the equatorial area.
References
[2] Amit Sahay, V. S. A. T. M. P., 2015. A Review Of Solar Photovoltaic Panel Cooling System With Special Reference to Ground Coupled Central Panel Cooling System (GC-CPCS). Elsevier, Volume 42, pp. 306-312.
[3] Chow, T., 2010. A Review on Photovoltaic/Thermal Hybrid Solar Technology. Elsevier, 87(Applied Energy), pp. 365-379.
[4] Colt, G., 2016. Performance Evaluation of a PV Panel By Rear Surface Water Active Cooling. International Conference on Applied and Theoretical Electricity (ICATE), pp. 1-5.
[5] Cui Yong, W. Y. Z. L., 2015. Performance Analysis no A Building-Integrated Solar Heating and Cooling Panel. 74(Renewable Energy), pp. 627-632.
[6] Gumilar, A., 2011. Sistem air pendingin. jakarta: STE.
[7] Gur Mittelman, A. K. A. D., 2017. Solar Cooling With Concentrating Photovoltaic/Thermal (CPVT) System. Elsevier, Volume 48, pp. 2481-2490.
[8] Haitham M. Bahaidarah, B. T. P. G. a. S. R., 2015. A Combined Optical, Thermal and Electrical Performance Study of a V-Trough PV System—Experimental and Analytical Investigations. Energies.
[9] I.K. Karathanassis, E. P. V. B. G. B., 2017. Desain and Experimental Evaluation of a Parabolic-Trough Concentrating Photovoltaic/Thermal (CPVT) System With High-Efficiency Cooling. Elsevier, Volume 101, pp. 467-483.
[10] J.P. Holman, E. J., 1994. Perpindahan Kalor. Mahasiswa ed. Jakarta: Erlangga.
[11] kadir, A., 1995. Energi Sumber Daya, Inovasi, Tenaga Listrik Dan Potensi Ekonomi. II ed. Jakarta: Universitas Indonesia.
[12] Khwe, K. H., 2013. Pengaruh Temperatur Terhadapt Kapasitas Daya Panel Surya. ELKHA, 5(2), pp. 23-26.
[13] Kuswandi, S., 2007. Kendali Cerdas: teori dan aplikasi praktisnya. Surabaya: Andi.
[14] Matias, C. A., Santos, L. M., Alves, A. j. & Calixto, W. P., 2016. Electrical Performance Evaluation of PV Panel Though Water cooling Technique. 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), pp. 1-5.
[15] Mingke Hu, B. Z. J. L. Y. W. G. P., 2017. Preliminary Thermal analisis of a comboned photovoltaic-photothermic-nocturnal radiative cooling system. Elsevier, XXX(Energy), pp. 1-12.
[16] Mulyono, 2010. Analisa Beban Kalor Menara Pendingin Basah Induced-Draft Aliran Lawan Arah. Semarang: Jurusan Teknik Mesin Politeknik Negeri Semarang.
[17] P G Nikhil, M. P., 2012. Performance Enhancement Of Solar Module by Cooling: An Experimental Investigation. Energy and Environment, 3(1), pp. 73-82.
[18] Putra, R. S., 2015. Analisa perhitungan beban cooling tower pada fluida di mesin injeksi plastik. Jurnal Teknik Mesin Mercu Buana, Volume 4, pp. 56-62.
[19] Rachman, T., 2011. PLN Manado Kembangkan Listrik Tenaga Surya di 14 Pulau.[Online] Available at: http://www.republika.co.id/berita/regional/nusantara/11/04/16/ljqpl6-pln-manado-kembangkan-listrik-tenaga-surya-di-14-pulau [Accessed 16 July 2017].
[20] Roepandi, O., 2008. Pengoperasian Sistem Air Pendingin. Surabaya: PT. Indonesia Power.
[21] Subandi, S. H., 2014. Korelasi Suhu dan Intensitas Cahaya Terhadap Daya Pada Solar Panel. Yogyakarta, Seminar Nasional Aplikasi Sains dan Teknologi (SNAST).
[22] Syafaruddin, S. M. S. F. M. R. A. S. L., 2017. Aplication Of Photovoltaic Power For Cooling System. Istambul, Internasioanal Conference On Energy and Therml Enginerring.
[23] Terano, T. K. A. d. M. S., 1987. Fuzzy Systems Theory and Its Applications. San Diego: CA: Academic Press, Inc.
[24] Yong Cui, Y. W. Q. H. S. W., 2016. Effect of Radiation and Convection Heat Transfer on Cooling Performance of Radiative Panel. Renewable Energy, Volume 99, pp. 10-17.